Diamond photonics platform enabled by femtosecond laser writing
نویسندگان
چکیده
Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.
منابع مشابه
Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses
Diamond’s nitrogen-vacancy (NV) centers show great promise in sensing applications and quantum computing due to their long electron spin coherence time and because they can be found, manipulated, and read out optically. An important step forward for diamond photonics would be connecting multiple diamond NVs together using optical waveguides. However, the inertness of diamond is a significant hu...
متن کاملFemtosecond laser inscription of Bragg grating waveguides in bulk diamond.
Femtosecond laser writing is applied to form Bragg grating waveguides in the diamond bulk. Type II waveguides are integrated with a single pulse point-by-point periodic laser modification positioned toward the edge of the waveguide core. These photonic devices, operating in the telecommunications band, allow for simultaneous optical waveguiding and narrowband reflection from a fourth-order grat...
متن کاملThe study of propagation of a femtosecond laser pulse in the breast tissue
In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملExtending filamentation
Femtosecond filamentation is an appealing self-organization phenomenon in optical physics that has been awaiting practical applications for a long time. First described some 20 years ago1, the collapse of the spatial beam profile of a femtosecond laser beam may lead to the formation of metre-long plasma channels in atmospheric air. These plasma channels resemble those generated by electric disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016